Traffic impacts of road user charging – modelling and surveys

Paul Riley - Jacobs Babtie

paul@babtie.cz + 420 603 283685

Content of the presentation

- Why modelling toll effects the crystal ball
- Our research project on urban road pricing č.
 1F41D/099/120
 - Theory modelling of the traffic impacts of RUC
 - Surveys for setting urban road pricing modelling parameters in CZ
- Some general conclusions

Why model traffic impacts of RUC systems?

RUC is significant for route / modal choice / trip volumes

Traffic Reduction often main aim of urban pricing

Traffic Diversion

- Traffic diversion can have an impact on scheme income
- Traffic diversion can have a huge impact on acceptability
- We need to plan restrictive measures / set tolls in advance

"Wait and see" approach dangerous for credibility and success But can it be modelled accurately in advance?

- Reasonably well if you have the right model with the right data
- Takes time, money and the right expertise

Ideal modelling process for tolls / RUC

User surveys,field surveys

Theory, parameters

Model content

Network element model

Vehicle / trip type model

Generalized trip cost (GC) model

Route/Mode choice model

Trip reduction models

Network model

OD – matrices by journey type / mode

Dynamic trip assignment

Key concepts – Generalized Cost (GC) model for transport choices

- Relative <u>perceived costs</u> key
 - for choices between alternatives
- Generalized trip (GC) travel option costs = (for roads)

```
OPERATIONS COSTS: DISTANCE × OPCOSTS/KM (mainly fuel)
```

- + TIME COSTS: [DISTANCE + SPEED + WAITING] × TIME VALUE/HR
- + CHARGES: TOLL(/KM ?) + PARKING + FARES ETC.
- Choose the lowest GC option
- In reality GC option modelling is complex at macro level because...
- GC Parameters vary for
 - different user characteristics e.g income
 - different trip types
 e.g. work, commuting, leisure
 - sometimes high modal / route penalties
- Capturing variation in realistic and simple enough way is key to good model

Key concepts – Mode Choice model based on GC

- Logit models used on relative GC to capture variation for mode shift
- mode or route captives
 (safety, familiarity,
 obligation, physical need
 etc.) on all choice sides
- characteristic sensitivity to changes of toll /charge (B). Need to find this out in surveys
- per O-D relation

Key concepts – Route Choice model based on GC

- "All-or-nothing least GC route" is often used for route choice
 - when wide enough diversity of modelled trip types and O-D relations
 - and/or with statistical variation of unit time value as an individualisation effect
 - per O-D relation

The secret to good modelling of tolls / user charges

- Get the right level of model detail and data quality
 - dissagregation to enough trip types
 - for car trips business, commuting, leisure
 - need O-D surveys at this level of dissagregation
 - corresponding route/mode choice method(s) and underpinning GC model
 - need user behaviour surveys to set choice model parameters
- Thorough calibration and validation of the basic model against the current state (no toll, charge) – travel times, volumes, modal split
- Software fit for the task (not just what we know)
- Sensitivity analysis on uncertain key parameters

The secret to good modelling of tolls / user charges User behaviour surveys for choice model parameter setting

- asking users how they make travel decisions
- asking users how they value their time / operations
- asking users what they would do if a toll was imposed
- asking the questions in the right way

.

- key for understanding and modelling
 - decision processes
 - modal shift, trip timing shift, trip frequency sensitivity parameters
 - GC parameter variation (time valuation)

Our User Behaviour Surveys in the research project

- Stated Preference Surveys (SPS) for urban road pricing behaviour in Prague and Pardubice
- Demonstration and testing of method
- Derivation of some modelling parameters in these two cases
 - Perceived value of time of car users
 - Trip timing shifts sensitivity relative to charge rate for peak charges
 - Trip frequency reduction sensitivity relative to charge rate
 - Modal shift sensitivity relative to charge rate (B)

Key concepts – Typical Binary Logit Mode Choice Model: Modal split (y) against difference in GC (x)

 $P(m_1) = \exp[-B*ON(m_1)] / [\exp[-B*ON(m_1)] + \exp[-B*ON(m_2)]]$

SPS questionnaire for urban pricing models

- asked respondents to describe behaviour changes
 - with various km based urban charges of increasing value
 - for typical commuting (A) and other non-work trips (B) separately
- asked respondents willingness to pay for reduction in typical journey times (time valuation)
- ascertained personal (e.g. income) and trip details

Transfer of car trips to PT against average day charge – Praha 100 CZK / day > - 25 % commuting and recreational

Transfer of car trips to PT – Pardubice 50 CZK / day > - 22 % recreational, - 12 % commuting

Transfer of car trips to bike and walk – Pardubice 50 CZK / day > - 20 % commuting, - 12 % recreational

Reduction in frequency of trips – Prague 50 CZK / day > - 5 % commuting, - 10 % recreational

Off- peak time shift of car trips, with peak time charge – Prague 100 CZK / day > - 15 % commuting, - 30 % recreational

Urban road pricing in Czech conditions

Summary of car trip reduction effects

- In Prague the main impact of the toll is from car to PT
- In Pardubice we would see a major shift to bike traffic
- An average 100 CZK all day charge in Prague could reduce affected commuting and recreational car traffic by circa. 35 %
- Peak charge shifts are high for recreational traffic (up to 30 %)

Urban road pricing in Czech conditions – time valuation

Hodnota cestovního času (Kč/hod) v Praze				
Druh cesty	OA		MHD	
Dopravní prostředek	A	В	A	В
Stř. hodnota	43,4	31,0	20,0	12,8
Hladina spolehlivosti (95,0%)+/-	23,1	21,6	5,4	6,2
Hodnota cestovního času (Kč/hod) v Pardubicích				
Druh cesty	OA		MHD	
Dopravní prostředek	A	В	A	В
Stř. hodnota	17,5	14,9	9,0	8,4
Hladina spolehlivosti (95,0%)+/-	8,1	7,9	6,4	8,0

Urban road pricing in Czech conditions

UNIT TIME VALUATION

- Major difference
 - between car and PT users
 - and between Prague and Pardubice
- 50% declared indirectly that they do not value their travel time in their personal travel context.
 - this is probably a methodology problem
 - > we asked the question badly
 - more personal approach needed
 - average values are thus probably low
 - it deserves further and closer attention

Summary and conclusions

OUR RESEARCH

- Given some insights into urban charge modelling and user survey methodology in theory and practice, some rough logit model and GC parameter values for urban charging
- Much more work is needed to understand freight traffic and car trip behaviour under tolling conditions

GENERALLY

- We have to take modelling methods and travel behaviour data collection much more seriously if we want to predict user behaviour in the face of tolling and user charges
- Otherwise we will have to stay with "wait and see" strategy

Modelling software

MODELLING REQUIREMENTS

- Need dynamic generalized cost modelling
- Ability to model more modes of transport
- Need dynamic assignment option with quick iteration

SOFTWARE

- A job for flexible <u>static modelling programmes</u> TRIPS, EMME/2 SATURN, VISSUM, CONTRAM etc.
- Simulation environments getting better but not yet very suitable for dynamic assignment PARAMICS, AIMSUN

Models which do not work well generally

- Use foreign assumptions and parameters
- Have poor O-D data
- Have not been calibrated and validated against the current state :
 - modal split of O-D relations
 - traffic volumes by vehicle type
 - travel times
- Assignment, O-D or GC model is too simple

Impact of Toll on Freight diversion for I-81 in Virginia Route choice

Next Best Alternative Routing - Memphis, TN to New York, NY

Where do we stand in the Czech Republic?

- Research project of City-Plan from 2004-2005 (IF51D/119/120)
 - first serious full attempt at modelling HGV toll impacts in CR
 - within research programme in VISSUM
 - suggests that 4 CZK / km for HGV will give a circa 5 % diversion with quite some route-by-route variation
 - stochastically varied unit time value GC model, route choices based on relative GC
- Some model + and
 - stochastic variation is sensible
 - senstivity analysis on average time value
 - travel time only GC is pragmatic but imprecise for freight
 - * little local source data for the model except some counts
 - key unit and route values, route choice logic all uncalibrated by local haulier behaviour surveys, travel time data?
 - no distinction between "western" European, "eastern" European and local trucks

Key concepts – Example of route GC comparison with toll for Czech HGV system

Best practice - Impact of Toll on Freight diversion for I-81 in Virginia Details of model

- Interstate 81 freeway in Virginia improvement to be financed by freight toll
 - needed to know impacts on freight diversion / income by toll rates
- Diversion model
 - extensive routing decision process survey with hauliers
 - huge database on freight carrier types, volumes, vehicle types, trip patterns, commodities and operating costs
 - national freight flow model (O-D database by commodity type)
 - GC truck operating cost model based on mileage, time, route type, toll, by equipment-commodity type
 - next-best alternative, least-cost all-or-nothing route choice per equipment-commodity type
 - contact enough diversity for a good model
 - * not dynamic, congestion effect not tested

Impact of Toll on Freight diversion for I-81 in Virginia Results of model and surveys

- little transfer to poorer alternative routes for safety policy reasons
- high diversion of short trips with OK alternative even with low toll
- ...then longer trips come in with higher toll
- logit shape of diversion-toll vehicle volumes
- recommended toll level of 6-12 cents / km
 - with diversion of 8-15 % of vehicle kms
- good example of high data diversity nonstochastic model

Impact of Toll on Freight diversion for I-81 in Virginia Results of model – vehicle miles diverted against toll

Figure 3: I-81 Vehicle Miles Diverted at Various Toll Amounts (2003 Volumes)

Where do we stand in the Czech Republic?

- For Czech freight tolling scheme
 - we have not used the rich freight O-D data available at region to region level for domestic carriers
 - know little about foreign carrier trip movements
 - we don't really know how real companies choose routes for different vehicles, distance, equipment-commodity types
 - we don't understand local freight transport costs in depth and detail
 - freight toll models here so far have suffered from lack of detail and localisation due to lack of data or failure to use existing data or are more "what-if" impact models
- For urban car trips
 - in O-D data collection, we rarely make a distinction on trip types
 - recent research project gives some insight into user charge behaviour parameters

Urban road pricing in Czech conditions

UNIT TIME VALUATION

- Major difference
 - between car and PT users
 - and between Prague and Pardubice
- 50% declared indirectly that they do not value their travel time in their personal travel context.
 - this is probably a methodology problem
 - we asked the question badly
 - average values are thus probably low
 - it deserves further and closer attention

Increase in car occupancy of car trips – Prague 100 CZK / day > - 5 % commuting, - 0 % recreational

