

Czech Technical University Prague

Faculty of Transportation Sciences

Department of Control Engineering and Telematics

T.E.A.M. telematics economy architecture management

in

Telematics fundamentals, architecture, applications and benefits

Prof. Dr. Ing. Miroslav Svítek Head of Laboratory of Telematics Vice-Dean for external and foreign relations <u>svitek@fd.cvut.cz</u>

Content

Introduction

ITS model

- ITS architecture
- ITS data register
- ITS standards
- New services of with ITS models
- Economical analyze of ITS model

Application/projects of ITS models

- Dangerous Goods Transport Monitoring
- Universal On-Board Unit
- Development of new in-vehicle services
- ITS effectiveness
- Certification laboratory for ITS
 Conclusion

Project supported by Ministry of Transport of the Czech Republic

ITS architecture of the Czech Republic

- is solved within the project "ITS in transporttelecommunication conditions of the Czech Republic (802-210-108) supported by Ministry of Transport
- comes from KAREN, FRAME, ACTIF projects
- time schedule 2001 2005

ITS architecture – process analysis

F2

F1

GNSS loc

The architecture defines the basic arrangement in (abstract) space:

F3

Reference architecture – defines main subsystems, basic actors, relation with system environment

Functional architecture – defines main subsystem functions and applications

Information architecture – defines requirements on collection, transfer and processing of information
 Physical architecture – defines requirements on physical subsystems (equipments)
 Communication architecture – describes subsystems for transfer of information with respect to physical architecture

Organisational architecture – allocates the human function into system components

ITS architecture – process analysis

F2

Safety (risk analysis, risk classification, risk tolerability matrix, etc.)

Reliability (the ability to perform required function under given conditions for a given time interval)

Availability (the ability to perform required function at the initialisation of the intended operation)

Integrity (the ability to provide timely and valid alerts to the user when a system must not be used for the intended operation)

Continuity (the ability to perform required function without nonscheduled interruption during the intended operation)

Accuracy (the degree of conformance between a platform's true GNSS loc parameter and its estimated value)

F3

Management of ITS systems - model and reality

ITS architecture – Information data flow

ITS architecture – Information data flow

ITS architecture – physical architecture

Centre subsystems

- Mainterance Management System
- Parking Management System
- Public Transport Management System
- Tool Administration System
- Trafic Management System

- Travel Coordination System
- Archived Data Management System
- Commercial Vehicle Administration System
- Emergency Management System
- Feet Management System
- Freight Management System
- Information Service Provider System
- Law Enforcement System

ITS Data Register

The definition of data registry (ISO/IEC 11179)

 An information resource kept by a registration authority that describes the meaning form of data elements, including registration identifiers, definitions, names, value domains, metadata and administrative atributes

The data registry should manage two types of information

- Data and information standards at micro and macro information levels to be used in data management
- Information about current (legacy) data elements

Definition	Format		Value
ique kode signed to Airport	char (4)		LKPR
;	ique kode signed to	ique kode signed to char (4)	ique kode signed to char (4)

ITS Data Register

Benefit of data registry:

- **Data quality and access** reducing the ambiguity about similar data defined differently across systems
- Interoperability today, system interfaces are customized between pairs of systems (expensive to build and maintain, inflexible) solution is data structure definition
- **Cost effectiveness** constrained budget can be used when data services can serve multiple systems rather than when each system develops its own data services locally
- Flexibility common data services developed with automated tools allows systemwide access to metadata and the data behind them more easily and efficiently

ITS Standards

ITS standards (CEN, ISO) could be linked with

- ITS architecture: functions, interfaces, physical subsystems, communication links
- ITS data registry: data model, transmission messages

The role of ITS standards could be summarized:

- instrument for time, parameter and protocol synchronization
- added value for ITS architecture and ITS data registry

Web portal: www.its-portal.cz

Tools for ITS design

See.

Tools for ITS design

Economical Analysis of ITS Architecture

Application of ITS models

Project supported by Ministry of Transport of the Czech Republic

Information system for monitoring and control of dangerous goods

- is one of the pilot applications prepared within project "Involvement of the Czech Republic into Galileo Project" (802-210-112) supported by Ministry of Transport
- is pilot application of using the ITS architecture for practical design of selected telematics application
- time schedule 2001 - 2006

Project supported by Ministry of Trade and Industry of the Czech Republic

Universal On-Board Unit for ITS

- is the industry realization of universal ITS on-board unit in conformance with Czech patent
 - Project consortium:
 - Honeywell,
 - Telematix Services, Telematix Software,
 - Faculty of Transportation Sciences, Czech Technical University
- time schedule
 2006 2009

•

System architecture

- Definition of all parameters used in OBU together with its attributes (sample frequency, accuracy, representation, etc.)
- Definition of unified SW modules available for all OBU processes (functions, databases and conditions)
- Definition of OBU management taking into account all system parameters (safety, priority, etc.)
 - Definition of OBU processes/ applications using unified functions, databases and conditions (development kit)

Project supported by Ministry of Transport of the Czech Republic

Economical, Ecological and Safety Electronic Fee Collection

- is supported by Ministry of Transport of the Czech Republic
- the project consortium is:
 - Czech Technical University of Prague, Faculty of Transportation Sciences
 - Czech University of Agriculture in Prague, Technical Faculty
 - Telematix Services, a.s.
- time schedule is 2004 2007

Using of in-vehicle data in transport telematics applications

- The connection between OBU and in-vehicle data (CAN) can yield to providing the new telematics services:
 - In-vehicle weight in motion
 - on-line assessment of vehicle emission
 - on-line measurement of externalities
 - safety assessment of vehicle driving

OBU

- ecological assessment of vehicle driving,
- etc.

6

Illustrative example - In-vehicle weight in motion system

- The basic principle comes from Newton's Law of Inertia:
 - F = m . a
 - F vector of vehicle force,
 - m vehicle weight,
 - a vector of vehicle acceleration
- The acceleration *a* is measured by accelerometer or GPS/GALILEO locator inside OBU
- The vehicle force F is measured by processing of CAN bus data
- Novak M., Svitek M., Votruba Z.: The patent application CZ PV 2003-3337

$$\mathbf{m}_{i} \coloneqq \frac{\frac{\mathbf{i}\mathbf{p}\cdot\mathbf{u}\mathbf{p}}{\mathbf{Ra}}\cdot\mathbf{M}\left(\mathbf{n}_{i}\right) - \mathbf{a}_{i}\cdot\left(\frac{\mathbf{i}\mathbf{p}^{2}\cdot\mathbf{Im}}{\mathbf{u}\mathbf{p}\cdot\mathbf{Ra}^{2}} + \frac{\mathbf{Ia} + \mathbf{Ib}}{\mathbf{Ra}^{2}}\right) - \frac{\mathbf{0.5}\cdot\mathbf{p}\cdot\mathbf{cw}\cdot\mathbf{SP}}{\mathbf{3.6}^{2}}\cdot\left(\mathbf{v}_{i} - \mathbf{vx}_{i}\right)^{2}$$
$$\mathbf{a}_{i} + \left(\mathbf{ka} + \frac{\mathbf{v}_{i}}{\mathbf{3.6}}\cdot\mathbf{kb}\right) + \mathbf{9.807}\cdot\sin\left(\operatorname{atan}\left(\frac{\alpha}{100}\right)\right)$$

Project supported by Ministry of Transport of the Czech Republic

ITS effectiveness

- Is supported by Ministry of Transport of the Czech Republic
- Project consortium:
 - Telematix Services, a.s.
 - Babtie, s.r.o.
 - Telefonica O2, a.s.
- time schedule 2004 2008

ITS market packages

Example – 3 ITS market packages

Example – synergy models of ITS packages

Fuzzy-linguistic approximation

Processing of different knowledge representations (experts knowledge, equations, statistical knowledge)
 Synergy models of cost/benefit indicators

ITS Certification Laboratory

- ۲ \bullet ٠
 - 2005 2007 a lot of lessons learned through EFC system implementation
 - **2007** expert team of Minister created basic EFC architecture with recommend opened interfaces
 - 2007 first contract signed between Ministry of Transport and Faculty of Transportation Sciences to launch ITS certification laboratory
 - 2007 first ideas how to legally create the laboratory were discussed:
 - ITS architecture and standards are main support documents for certification
 - Certification is in reality the compliance evaluation between predefined architecture/standards and real product of supplier
 - 2008 certification laboratory starts to work

Thank you for attention

More information: WWW.LT.FD.CVUT.CZ

